The multiplicative persistence of a number is defined by Neil Sloane (Neil J.A. Sloane in The Persistence of a Number published in Journal of Recreational Mathematics 6, 1973, pp. 97-98., 1973) as the number of steps to reach a one-digit number when repeatedly multiplying the digits. Example:
679 -> 378 -> 168 -> 48 -> 32 -> 6.
For each test case there is a single line of input containing a decimal number with up to 1000 digits. A line containing -1 follows the last test case.
For each test case you are to output one line containing one integer number satisfying the condition stated above or a statement saying that there is no such number in the format shown below.
0 1 4 7 18 49 51 768 -1
10 11 14 17 29 77 There is no such number. 2688