In the Cartesian plane, there are n (odd) distinct lines fi(x) = ai + xbi (i = 1, 2, …, n). For each x, F(x) denotes the median of {f1(x), f2(x), ..., fn(x)}. You are required to find the solution space of the equation F(x) = 0.
The input contains multiple test cases. Each test case have n + 1 lines the first one of which contains n (1 < n < 105 and odd). Then n lines follow, each of which contains two integers ai and bi (|ai| ≤ 108, 0 ≤ bi < 108). A zero follows the last test case.
For each test case, output the solution space as an interval on a separate line. Interval boundaries should be rounded to two digits beyond the decimal point. “+inf
” and “-inf
” are used to represent positive and negative infinities. The solution space will form at most one interval in this problem. If the solution space is empty, just output “-1
”.
3 0 0 1 0 0 1 3 0 0 1 2 1 1 3 1 0 2 0 3 0 3 1 1 1 2 1 3 3 0 0 1 0 -1 0 0
(-inf,0.00] [-1.00,-0.50] -1 [-0.50,-0.50] (-inf,+inf)
Be cautious about outputting “ Illustration of the second test case in the sample input:-0.00
”.
Submit