Alexander Charles McMillan loves to gamble, and during his last trip to the casino he ran across a new game. It is played on a linear sequence of squares as shown below.
Input will consist of multiple problem instances. The first line will consist of an integer n indicating the number of problem instances. Each instance will consist of two lines: the first will contain two integers m and T (1 <= m <= 50, 1 <= T <= 40), where m is the size of the board excluding the Start and End squares, and T is the target number of turns. The next line will contain instructions for each of the m interior squares on the board. Instructions for the squares will be separated by a single space, and a square instruction will be one of the following: +n, -n, L or 0 (the digit zero). The first indicates a right move of n squares, the second a left move of n squares, the third a lose-a-turn square, and the fourth indicates no instruction for the square. No right or left move will ever move you off the board.
Output for each problem instance will consist of one line, either
Bet for. x.xxxx
if you think that there is a greater than 50% chance that the game will end in T or fewer turns, or
Bet against. x.xxxx
if you think there is a less than 50% chance that the game will end in T or fewer turns, or
Push. 0.5000
otherwise, where x.xxxx is the probability of the game ending in T or fewer turns rounded to 4 decimal places. (Note that due to rounding the calculated probability for display, a probability of 0.5000 may appear after the Bet for. or Bet against. message.)
5 4 4 0 0 0 0 3 3 0 -1 L 3 4 0 -1 L 3 5 0 -1 L 10 20 +1 0 0 -1 L L 0 +3 -7 0
Bet for. 0.9375 Bet against. 0.0000 Push. 0.5000 Bet for. 0.7500 Bet for. 0.8954