Finding the shortest route is the typical task of a truck driver. If the truck moves via the shortest route, it saves money. It is also important to know alternative routes of the same length, for the case a route is unavailable, e.g., due to some road work.
To describe a region, we need to model a map of it. ACM recently found that triangular and rectangular based models are insufficient and decided to use hexagons for describing maps. Given a regular hexagonal grid (like honeycombs), we can number the cells starting with 1 (in any particular cell) and going in a spiral-like manner to other cells. This way, each cell is uniquely identified by its number and vice versa, each positive integer identifies a single cell.
The input consists of a series of tasks, each of them given on one separate line. The line contains two integer numbers X and Y, separated by a space, 1 <= X, Y <= 1 000 000, X != Y. These numbers identify two different cells. The last task is followed by a line containing two zeros. This line terminates the input.
For each task, output the sentence "There are N routes of the shortest length L.". Replace L with the smallest possible route length between cells X and Y. Replace N with the number of different routes of that length. If there is a single route only, use the words "is" and "route" instead of "are" and "routes".
1 2 1 7 1 8 1 19 7 12 1000 9000 0 0
There is 1 route of the shortest length 1. There is 1 route of the shortest length 1. There are 2 routes of the shortest length 2. There is 1 route of the shortest length 2. There are 3 routes of the shortest length 3. There are 278940769844931007968 routes of the shortest length 73.